
Struts 2 - Configuration Files

This chapter will take you through basic configuration which is required for a Struts

2 application. Here we will see what can be configured with the help of few important

configuration files like web.xml, struts.xml, strutsconfig.xml and struts.properties

Honestly speaking, you can start working by just using web.xml and struts.xml configuration

files (as you have already witnessed in our previous chapter where our example worked using

these two files). However, for your knowledge we will explain regarding other files also.

The web.xml File

The web.xml configuration file is a J2EE configuration file that determines how elements of

the HTTP request are processed by the servlet container. It is not strictly a Struts2 configuration

file, but it is a file that needs to be configured for Struts2 to work.

As discussed earlier, this file provides an entry point for any web application. The entry point

of Struts2 application will be a filter defined in deployment descriptor (web.xml). Hence we

will define an entry of FilterDispatcher class in web.xml. The web.xml file needs to be created

under the folder WebContent/WEB-INF.

This is the first configuration file you will need to configure if you are starting without the aid

of a template or tool that generates it (such as Eclipse or Maven2).

Following is the content of web.xml file which we used in our last example.

<?xml version = "1.0" Encoding = "UTF-8"?>

<web-app xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"

 xmlns = "http://java.sun.com/xml/ns/javaee"

 xmlns:web = "http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"

 xsi:schemaLocation = "http://java.sun.com/xml/ns/javaee

 http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd"

 id = "WebApp_ID" version = "3.0">

 <display-name>Struts 2</display-name>

 <welcome-file-list>

 <welcome-file>index.jsp</welcome-file>

 </welcome-file-list>

 <filter>

 <filter-name>struts2</filter-name>

 <filter-class>

 org.apache.struts2.dispatcher.FilterDispatcher

 </filter-class>

 </filter>

 <filter-mapping>

 <filter-name>struts2</filter-name>

 <url-pattern>/*</url-pattern>

 </filter-mapping>

</web-app>

Note that we map the Struts 2 filter to /*, and not to /*.action which means that all urls will be

parsed by the struts filter. We will cover this when we will go through the Annotations chapter.

The Struts.xml File

The struts.xml file contains the configuration information that you will be modifying as

actions are developed. This file can be used to override default settings for an application, for

example struts.devMode = false and other settings which are defined in property file. This file

can be created under the folder WEB-INF/classes.

Let us have a look at the struts.xml file we created in the Hello World example explained in

previous chapter.

<?xml version = "1.0" Encoding = "UTF-8"?>

<!DOCTYPE struts PUBLIC

 "-//Apache Software Foundation//DTD Struts Configuration 2.0//EN"

 "http://struts.apache.org/dtds/struts-2.0.dtd">

<struts>

 <constant name = "struts.devMode" value = "true" />

 <package name = "helloworld" extends = "struts-default">

 <action name = "hello"

 class = "com.tutorialspoint.struts2.HelloWorldAction"

 method = "execute">

 <result name = "success">/HelloWorld.jsp</result>

 </action>

 <-- more actions can be listed here -->

 </package>

 <-- more packages can be listed here -->

</struts>

The first thing to note is the DOCTYPE. All struts configuration file needs to have the correct

doctype as shown in our little example. <struts> is the root tag element, under which we declare

different packages using <package> tags. Here <package> allows separation and

modularization of the configuration. This is very useful when you have a large project and

project is divided into different modules.

For example, if your project has three domains - business_application, customer_application

and staff_application, then you could create three packages and store associated actions in the

appropriate package.

The package tag has the following attributes −

Sr.No Attribute & Description

1
name (required)

The unique identifier for the package

2
extends

Which package does this package extend from? By default, we use struts-default as the base package.

3
abstract

If marked true, the package is not available for end user consumption.

4
namespace

Unique namespace for the actions

The constant tag along with name and value attributes should be used to override any of the

following properties defined in default.properties, like we just set struts.devMode property.

Setting struts.devMode property allows us to see more debug messages in the log file.

We define action tags corresponds to every URL we want to access and we define a class with

execute() method which will be accessed whenever we will access corresponding URL.

Results determine what gets returned to the browser after an action is executed. The string

returned from the action should be the name of a result. Results are configured per-action as

above, or as a "global" result, available to every action in a package. Results have

optional name and type attributes. The default name value is "success".

Struts.xml file can grow big over time and so breaking it by packages is one way of

modularizing it, but Struts offers another way to modularize the struts.xml file. You could split

the file into multiple xml files and import them in the following fashion.

<?xml version = "1.0" Encoding = "UTF-8"?>

<!DOCTYPE struts PUBLIC

 "-//Apache Software Foundation//DTD Struts Configuration 2.0//EN"

 "http://struts.apache.org/dtds/struts-2.0.dtd">

<struts>

 <include file="my-struts1.xml"/>

 <include file="my-struts2.xml"/>

</struts>

The other configuration file that we haven't covered is the struts-default.xml. This file contains

the standard configuration settings for Struts and you would not have to touch these settings

for 99.99% of your projects. For this reason, we are not going into too much detail on this file.

If you are interested, take a look into the at the default.properties file available in struts2-core-

2.2.3.jar file.

The Struts-config.xml File

The struts-config.xml configuration file is a link between the View and Model components in

the Web Client but you would not have to touch these settings for 99.99% of your projects.

The configuration file basically contains following main elements −

Sr.No Interceptor & Description

1
struts-config

This is the root node of the configuration file.

2
form-beans

This is where you map your ActionForm subclass to a name. You use this name as

an alias for your ActionForm throughout the rest of the strutsconfig.xml file, and

even on your JSP pages.

3
global forwards

This section maps a page on your webapp to a name. You can use this name to refer

to the actual page. This avoids hardcoding URLs on your web pages.

4
action-mappings

This is where you declare form handlers and they are also known as action

mappings.

5
controller

This section configures Struts internals and rarely used in practical situations.

6
plug-in

This section tells Struts where to find your properties files, which contain prompts

and error messages

Following is the sample struts-config.xml file −

<?xml version = "1.0" Encoding = "ISO-8859-1" ?>

<!DOCTYPE struts-config PUBLIC

 "-//Apache Software Foundation//DTD Struts Configuration 1.0//EN"

 "http://jakarta.apache.org/struts/dtds/struts-config_1_0.dtd">

<struts-config>

 <!-- ========== Form Bean Definitions ============ -->

 <form-beans>

 <form-bean name = "login" type = "test.struts.LoginForm" />

 </form-beans>

 <!-- ========== Global Forward Definitions ========= -->

 <global-forwards>

 </global-forwards>

 <!-- ========== Action Mapping Definitions ======== -->

 <action-mappings>

 <action

 path = "/login"

 type = "test.struts.LoginAction" >

 <forward name = "valid" path = "/jsp/MainMenu.jsp" />

 <forward name = "invalid" path = "/jsp/LoginView.jsp" />

 </action>

 </action-mappings>

 <!-- ========== Controller Definitions ======== -->

 <controller contentType = "text/html;charset = UTF-8"

 debug = "3" maxFileSize = "1.618M" locale = "true" nocache = "true"/>

</struts-config>

For more detail on struts-config.xml file, kindly check your struts documentation.

The Struts.properties File

This configuration file provides a mechanism to change the default behavior of the framework.

Actually, all the properties contained within the struts.properties configuration file can also

be configured in the web.xml using the init-param, as well using the constant tag in

the struts.xml configuration file. But, if you like to keep the things separate and more struts

specific, then you can create this file under the folder WEB-INF/classes.

The values configured in this file will override the default values configured

in default.properties which is contained in the struts2-core-x.y.z.jar distribution. There are a

couple of properties that you might consider changing using the struts.properties file −

When set to true, Struts will act much more friendly for developers

struts.devMode = true

Enables reloading of internationalization files

struts.i18n.reload = true

Enables reloading of XML configuration files

struts.configuration.xml.reload = true

Sets the port that the server is run on

struts.url.http.port = 8080

	Struts 2 - Configuration Files
	The web.xml File
	The Struts.xml File
	The Struts-config.xml File
	The Struts.properties File

